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CHARACTERISTICS OF ENERGY-OPTIMAL SPIRALING
LOW-THRUST ESCAPE TRAJECTORIES

Nicholas Bradley*, Daniel Grebow†

We present and discuss trajectory characteristics of low-thrust spacecraft thrusting
along the instantaneous velocity vector toward escape. The behavior of the os-
culating eccentricity is examined, in which eccentricity decreases to a minimum
before quickly increasing toward escape (e = 1). We find that the argument of pe-
riapsis replaces true anomaly as the fast time variable, and the spacecraft escapes
near an osculating true anomaly of 90 degrees. This behavior was observed by the
authors while designing thrusting maneuvers for the Dawn spacecraft. In this pa-
per the dynamical theory governing these observations is discussed and explored
with numerical simulations.

INTRODUCTION

Spacecraft that utilize high efficiency low-thrust engines (which deliver a thrust magnitude on the
order of tens to hundreds of milli-Newtons) are increasingly being utilized to accomplish a variety
of mission objectives that may otherwise not be possible to achieve. As the technology develops,
the algorithms used to design and execute low-thrust spacecraft trajectories are maturing as well.
In this paper, we describe the characteristics of a certain type of low-thrust trajectory: the locally
energy-optimal spiral.

Low-thrust escape is instantaneously energy-optimal when thrusting along the velocity vector.
Many authors have investigated spiral-out escape for low-thrust spacecraft, ranging from introduc-
ing the concept at the beginning of the space age, to more recent efforts to introduce optimization
strategies, targeting methods, and analytical approximations.1–8

An energy-optimal control law was used to design the maneuver to transfer the Dawn space-
craft to a higher altitude orbit around the dwarf planet Ceres during extended mission operations
in 2016-2017, and it was during this time that the authors observed the unique behaviors described
in this paper. Driven by this operational experience, we explore here some of the idiosyncrasies of
designing a trajectory to quickly spiral toward or away from a target body.

When designing the spiral-out transfer maneuver for Dawn, the Navigation team noticed that
the osculating eccentricity would oscillate and decrease to a minimum value, and then increase to
escape (if thrusting was allowed to continue through an escape condition). After some investigation,
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the team found that the exhibited characteristics are present in the dynamical theory that governs
the motion of low-thrusting spacecraft around a single point-mass, and previous authors have noted
similar effects (both analytic and numerical) to varying degrees.9–11 Petropoulos investigated spiral-
out behavior in-depth in a theoretical sense, and described the behavior of the eccentricity as a
spacecraft approaches escape.12 Petropoulos et al also described various control laws for low-thrust
escape spirals, including the tangential thrust direction.13

With motivation from the actual as-flown Dawn trajectory, we describe the dynamical theory be-
hind these observations and explore with numerical simulations the behavior of a low-thrust space-
craft thrusting toward escape with a locally energy-optimal control law. This paper builds on the
rich history of investigation into the characteristics and behavior of low-thrust spirals.

MOTIVATION: DAWN TRANSFER TO XMO3 ORBIT

To satisfy the Dawn project’s extended mission science requirements,14 the spacecraft transferred
up to a high-altitude orbit, known as “XMO3” (eXtended Mission Orbit 3) in October-November
2016. In early October, the Dawn Navigation team designed the maneuver to raise the orbit radius
from 2,000 km to an orbit with a periapsis altitude of at least 7,200 km, which was the only orbit re-
quirement for XMO3 (this minimum altitude was required in order for the Gamma Ray and Neutron
Detector instrument to gather background noise measurements intended to calibrate data collected
during the prime mission). Because there were no requirements on the characteristics of the orbit
other than the minimum altitude, the Navigation team utilized a locally energy-optimal steering law
to design the transfer. The designed spiral-out is shown in Figure 1.

Figure 1. Dawn spacecraft spiraling transfer to the XMO3 orbit as part of the ex-
tended mission; the blue x is the location of the XMO3 orbit insertion. The gap in the
spiral near the bottom center is a forced coast segment inserted for a required High
Gain Antenna track, when the spacecraft was not allowed to thrust.

The orbit radius for the spiral-out transfer, along with osculating periapsis and apoapsis, is shown
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in Figure 2 plotted as a function of transfer time. The plot indicates the typical Keplerian motion
for the first 20 days of the transfer, where the orbit radius passes between periapsis and apoapsis as
the spacecraft true anomaly rotates through a full 360 degrees (i.e., the green line oscillates between
the blue and red lines, touching them when the spacecraft crosses an apse). However, after 20 days
into the transfer, the orbit radius no longer touches the osculating ellipse apses. This interesting
phenomenon is perhaps better visualized by inspecting true anomaly as a function of time.

In the top plot in Figure 3, the true anomaly ‘settles’ near 90 degrees roughly 20 days into the
transfer. Concurrently, the argument of periapsis starts rotating about the unit circle, replacing the
true anomaly as the fast time variable. At this time, the spacecraft ceases traversing the full extent
of the osculating ellipse. Here it is sufficiently far away from Ceres that the thrust acceleration,
compared to the central body gravity, is large enough to continuously turn the ellipse a full 360
degrees. Also during this time, the eccentricity reaches a minimum (see Figure 4) and increases
toward escape (e = 1). In actual operations, thrusting to enter the high orbit ceased at around
e = 0.1, well before the spacecraft could escape from Ceres.

Figure 2. Dawn spacecraft spiral-out to the XMO3 orbit; radius (green), osculating
periapsis (blue) and osculating apoapsis (red) are shown as a function of transfer time.

Also shown in Figure 4 is a High Gain Antenna (HGA) pass, when the spacecraft ceased thrusting
in order to communicate with operators on the ground. The Navigation team initially thought that
the behavior of the osculating eccentricity increasing as thrust progressed was due to the placement
of this forced coast period. It was hypothesized that perhaps the coasting occurred at a location
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Figure 3. Dawn spacecraft spiral-out to the XMO3 orbit; true anomaly and argument
of periapsis are shown as a function of transfer time.

in the orbit such that the subsequent thrust “reinforced” the increasing eccentricity, similar to how
apoapsis may be raised (and eccentricity increased) by thrusting only through periapsis. However,
after theoretical investigation (described in later sections of this paper), the team realized that such
behavior is characteristic of locally energy-optimal spirals for low-thrust trajectories even when
thrusting is continuous (i.e. no coasting). The presence of the HGA pass simply breaks the spiral
into two parts. It is apparent that before the HGA pass, at about 10 days past the start of the
trajectory, the osculating eccentricity reached a minimum near zero and subsequent local minima
then began to increase. However, the HGA pass effectively re-started the spiral-out from a different
true anomaly in the orbit, and the osculating eccentricity then decreased to a new minimum near
zero (around 17 days) before proceeding toward escape.

THEORETICAL OBSERVATIONS OF LOW-THRUST SPIRALS

To better understand the interesting behavior observed during the Dawn spacecraft spiral-out to
the XMO3 orbit, we investigated the orbital theory behind this phenomenon by studying well-known
orbital mechanics equations and by performing numerical simulations.

In the following general analysis, it is assumed that a spacecraft is thrusting in the instantaneous
velocity direction. Since thrusting is entirely in-plane, no out-of-plane component is considered in
the analysis. The analysis also assumes that no external forces act in the out-of-plane direction;
gravity is assumed to be from a central point-mass, and no other external influences (solar radiation
pressure, third bodies, nonspherical gravity, etc.) are present. As indicated by the actual operational
example of the Dawn spacecraft (where many perturbations are present), the behavior described in
the following analysis does not significantly change in the presence of additional perturbations.
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Figure 4. Dawn spacecraft spiral-out to the XMO3 orbit; eccentricity is shown as a
function of transfer time.

Theoretical Analysis

Local Energy-Optimality. At any given time t, the most effective way to change a spacecraft’s
specific energy (that is, to either minimize or maximize Ė) is to thrust either parallel or anti-parallel
to the instantaneous velocity vector. This optimality is easily shown by examining the osculating
specific energy equation (Equation 1).

E(t) =
v2

2
− µ

r
(1)

where v is the magnitude of the instantaneous velocity, µ is the gravitational parameter of the central
body, and r is the magnitude of the instantaneous position vector with respect to the central body’s
center. Converting Equation 1 into a vector equation gives:

E =
1

2
(v · v)− µ(r · r)−

1
2 (2)

where v is the instantaneous velocity vector, and r is the instantaneous position vector. Differentiat-
ing this equation once with respect to time, and defining the instantaneous total acceleration vector
as a yields:

Ė = (v · a) + µ(r · r)−
3
2 (r · v) (3)

If the total acceleration is due only to the gravitating central body, the two terms in Equation 3
cancel, which results in Ė = 0 (one of the ten constants of two-body spacecraft motion). For a
spacecraft with a thruster, we may separate the total acceleration into its gravitational component
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ag and thrust component aT so that a = ag + aT . Performing this substitution and cancelling
equivalent terms leaves us with:

Ė = v · aT (4)

To maximize Ė, it is evident that the thrust acceleration and the velocity vector must be aligned. So,
for Ė-maximal escape, the thrust must be aligned with the instantaneous velocity vector. Likewise,
for Ė-minimal capture and spiral-down, the thrust vector must be exactly opposite the instantaneous
velocity vector. (Another way to show that thrusting along or against the velocity vector is instan-
taneously energy-optimal is to consider when ∆E is an extremum for an instantaneous thrusting
impulse ∆v and take the limit as ∆t→ 0.)

Reduced Gauss equations for along-velocity thrusting. Because the orbit is at all times con-
tained within a single plane (see assumptions above), only four orbital elements are needed to de-
scribe the spacecraft’s orbit: semimajor axis (a), eccentricity (e), argument of periapsis, which we
use as the angular orientation of the orbit (ω), and true anomaly, which measures the spacecraft’s
angular location in its orbit relative to the osculating periapsis (f ).

Gauss’ variational equations provide an analytic representation of the first time derivatives of the
orbit elements when a spacecraft is exposed to an external nonconservative perturbing acceleration.
The perturbing acceleration may be expressed in terms of its radial component ar and its component
in the angular direction aθ, which is perpendicular to the radial direction. Note also that in three-
dimensional space, a component along the angular momentum direction ah may be included, but is
not considered here for the planar spiral.

With these considerations, Gauss’ variational equations are written as below (adapted from Bat-
tin15). Here, h =

√
µp is the scalar angular momentum of the orbit, and p = a(1 − e2) is the

semiparameter, or semilatus rectum, of the orbit. Note also that the expression for ḟ has a secu-
lar variation expression as its first term, which accounts for the motion of the spacecraft about the
osculating orbit.

ȧ =
2a2

h

(
e sin(f)ar +

p

r
aθ

)
(5)

ė =
1

h
(p sin(f)ar + ((p+ r) cos(f) + re) aθ) (6)

ω̇ =
1

he
(−p cos(f)ar + (p+ r) sin(f)aθ) (7)

ḟ =
h

r2
+

1

he
(p cos(f)ar − (p+ r) sin(f)aθ) (8)

The following substitution permits a rotation of the basis frame from polar coordinates (r, θ) to the
(n, v) direction, where the acceleration components are aligned with the velocity vector (av), and
the in-plane vector orthogonal to both the velocity vector and the out-of-plane angular momentum
vector (this orthogonal acceleration component is denoted as an).(

ar
aθ

)
=

1√
1 + e2 + 2e cos(f)

[
1 + e cos(f) e sin(f)
−e sin(f) 1 + e cos(f)

](
an
av

)
(9)

Using this transformation, and assuming that all of the disturbing acceleration is in the av direction
(so that all coefficients of an are zero), and denoting as aT the magnitude of the acceleration due to
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the thrust on the spacecraft, we arrive at these reduced and modified versions of Gauss’ equations:

ȧ = 2a2aT

√
2 + 2e cos(f)

µp
− 1

µa
(10)

ė = 2aT (e+ cos(f))

[
µ(2 + 2e cos(f))

p
− µ

a

]−1/2

(11)

ω̇ =
2aT sin(f)

e

[
µ(2 + 2e cos(f))

p
− µ

a

]−1/2

(12)

ḟ =
h(1 + e cos(f))2

p2
− 2paT sin(f)

he
√

1 + e2 + 2e cos(f)
(13)

These four equations are a set of coupled differential equations, where only ω does not appear in the
differential equations for the other three orbital elements. These equations assume that the thrust
acceleration is a constant quantity. In reality, when a spacecraft is commanded at a certain thrust
level, the force of the thrust is constant. Because the mass of the spacecraft drops as the thrust
continues, the acceleration actually increases over time for a constant force.

To circumvent this assumption, a fifth differential equation may be included for the mass loss,
where T is the constant force magnitude of the thruster and m is the mass of the spacecraft:

aT =
T

m
, ṁ = negative constant (14)

Equation 14 is uncoupled from Equations 10-13 and can be analytically integrated. The resulting
expression may then be substituted into Equations 10-13, and the coupled differential equations may
be numerically integrated, much the same as a set of Cartesian states may be integrated according
to the two-body equations of motion.

Analytical Observations. The eccentricity reaches a minimum or maximum when ė = 0 in
Equation 11. There are only two ways that this can happen:

ė = 0 if


e+ cos(f) = 0

or
µ(2+2e cos(f))

p − µ
a = 0

(15)

The first condition is quite obviously a valid condition for a minimum or maximum; when f =
cos−1(−e), the eccentricity is at an extremum.

The second condition reduces nicely to the following quadratic:

1 + 2e cos(f) + e2 = 0 (16)

This quadratic does not have any real roots for e, and therefore does not admit a real solution to the
condition for ė = 0. So the first condition in Equation 15 is the only real solution for extrema in
eccentricity.

In every spiral-out case, the eccentricity eventually reaches a final minimum, and then increases
(though local minima may still occur) through e = 1 (see examples in later sections). This final
minimum is the final true anomaly where f = cos−1(−e) is satisfied. Thereafter, the true anomaly
oscillates around an asymptotic value, rather than “wrapping around” the unit circle. Since the true
anomaly can no longer reach this condition for eccentricity extremum, the eccentricity increases
without bound.
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Numerical Explorations

All of the following simulated trajectories are generated using the constant parameters listed in
Table 1. The thrust direction is always parallel to the instantaneous velocity vector.

Table 1. Constant Parameters for All Spiral-Out Thrust Simulations

Parameter Value

Gravitational parameter (µ) 62.63 km3/s2

Initial spacecraft mass (m0) 800 kg
Constant thrust force (F ) 25 mN

Constant mass flow rate (ṁ) -5.0 g/hr

Single Spiral Example. A single spiral-out trajectory is generated with the initial conditions
given in Table 2.

Table 2. Initial Conditions for Single Spiral Example

Parameter Initial Value

Semimajor axis (a0) 2000 km
Eccentricity (e0) 0.2

Argument of Periapsis (ω0) 90 deg
True anomaly (f0) 0 deg

When these initial conditions and thrust parameters are integrated to escape (equivalently when
the instantaneous specific orbit energy is zero, the semimajor axis goes to infinity, or the eccentricity
reaches 1.0), the resulting spiral is shown in inertial space in Figure 5.
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Figure 5. A single spiraling trajectory integrated to escape, inertial frame

An important and elucidating way to view the trajectory is to construct the spacecraft position
in an osculating perifocal frame. A perifocal frame is a frame whose XY plane is coincident
with the orbit plane, and the +X axis points toward osculating periapsis. At any given instant in a
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spiral-out trajectory, an osculating perifocal frame may be constructed by determining the osculating
true anomaly of the spacecraft, which is its angular location relative to the osculating periapsis.
The spacecraft’s osculating perifocal coordinates may be found using Equation 17, where r is the
osculating position magnitude and f is the osculating true anomaly.[

x
y

]
peri

= r

[
cos(f)
sin(f)

]
(17)

After performing this coordinate transformation at each time step, the low-thrust spiraling example
in Figure 5 is shown in the osculating perifocal frame in Figure 6.
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Figure 6. A single spiraling trajectory integrated to escape, osculating perifocal frame

It is apparent in Figure 6 that at some point, the spacecraft no longer reaches apoapsis (in the−X
direction). Escape occurs in a vertical direction, near a true anomaly of f = 90◦ (toward the +Y
axis). Because the spacecraft does not reach apoapsis, this means that the true anomaly ceases to
traverse the unit circle, and is no longer the fast time variable. Because the true anomaly can no
longer reach the condition specified by f = cos−1(−e), the eccentricity increases without bound
toward escape. Figure 7 shows the true anomaly, eccentricity, and argument of periapsis up to the
time that the escape condition is met. The argument of periapsis begins nearly constant, but then
begins to oscillate more with time. As soon as the true anomaly no longer reaches f = 180◦, the
argument of periapsis becomes the fast time variable and starts wrapping around the unit circle. It
appears that the time when this switching occurs also corresponds to the time when the osculating
eccentricity reaches its global minimum before increasing to escape.

Varying Initial True Anomaly. We next investigate the behavior of the escape spiral when the
initial true anomaly is varied around the unit circle and initial eccentricity is not varied. Table 3
gives the initial conditions for this example, where two initial eccentricities are examined.

Figures 8 and 9 show many escape spirals for two different initial eccentricities with initial true
anomaly varying over the [0, 360) deg range, all simultaneously plotted in an osculating perifocal
frame. (The cyclical colormap in these figures is courtesy of Thyng et al16). All trajectories are
numerically integrated to escape, where the integration is terminated.

Note here that the escape condition occurs near a true anomaly of f = 90◦ for both e0 = 0.2 and
e0 = 0.9, regardless of the initial true anomaly in the eccentric orbit. Of course, the inertial escape
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Figure 7. Orbital elements of a single spiraling trajectory integrated to escape

Table 3. Initial Conditions for Varying Initial True Anomaly Example

Parameter Initial Value

Semimajor axis (a0) 2000 km
Eccentricity (e0) 0.2 or 0.9

Argument of Periapsis (ω0) 90 deg
True anomaly (f0) varies over [0, 360) deg

direction varies based on where the thrust begins in the initial orbit, but the osculating perifocal
frame shows that the direction of escape relative to the osculating periapsis is nearly fixed. Figures 8
and 9 show that the behavior of escaping near f = 90◦ is independent of the starting true anomaly.

Varying Initial Eccentricity. Here, the behavior of the escape spiral is investigated when the
spacecraft departs from periapsis, but the eccentricity of the initial orbit is allowed to vary. Ta-
ble 4 gives the initial conditions for this example.

Table 4. Initial Conditions for Varying Initial Eccentricity Example

Parameter Initial Value

Semimajor axis (a0) 2000 km
Eccentricity (e0) varies over [0, 0.9]

Argument of Periapsis (ω0) 90 deg
True anomaly (f0) 0 deg

Figure 10 shows all escape spirals over the [0, 0.9] range, all simultaneously plotted on an oscu-
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Figure 8. Spiral trajectories integrated to escape, varying initial true anomaly, e0 = 0.2

Figure 9. Spiral trajectories integrated to escape, varying initial true anomaly, e0 = 0.9

lating perifocal plot. Again, the trajectories shown are numerically integrated until e = 1. Figure 11
shows the time history of the osculating eccentricity for various initial eccentricities. The simula-
tions indicate that the spacecraft still escapes near f = 90◦ regardless of the initial eccentricity,
although the size of the variation in final true anomaly depends on the initial eccentricity. Also,
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from Figure 11 it is evident that no matter what the initial eccentricity is, even if it is initially quite
large, the osculating eccentricity will still decrease to a global minimum at some time during the
transfer. The time at which e is a minimum depends on the initial eccenctricity of the orbit.

Figure 10. Spiral trajectories integrated to escape, varying initial eccentricity

Figure 11. Eccentricity over time, varying initial eccentricity

Varying Initial Eccentricity and Initial True Anomaly. Finally, we present results when both ini-
tial eccentricity and initial true anomaly are allowed to vary. For a given initial orbital energy, the
semimajor axis a0 is fixed. We see from Gauss’ variational equations (Equations 10-13) that the
argument of periapsis ω does not appear in the expressions for the time rate of change of the other
three elements (or, in other words, the initial orbit orientation has no effect on the evolution of the
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other orbit elements). So, to explore spirals starting from orbits with a with a fixed initial energy,
one needs only to vary the initial eccentricity e0 and true anomaly f0. Here, an example spiral-out
trajectory is integrated for each pair of values in a grid of e0 and f0.

Instead of presenting all trajectories on an osculating perifocal plot, it is more insightful to ex-
amine the characteristics of the spirals via contour plots. Figure 12 shows the time needed to reach
the escape condition with varying initial eccentricities and initial true anomalies. Figure 13 shows
the overall minimum eccentricity reached on the way to escape for a given initial eccentricity and
initial true anomaly.

Figure 12. Time to reach escape condition, varying initial eccentricity and initial true anomaly

Characteristics and Observations

A very useful and insightful treatise on the analytically expected behavior of spiral-out trajecto-
ries is given by Petropoulos,12 where the author performs a significant amount of averaging analysis
to describe the behavior of the mean eccentricity and mean energy as the spacecraft proceeds to-
ward escape. In the averaging analysis presented in that work, it is clearly shown that the mean
eccentricity can be expected to decrease with an increase in orbital energy. It is also pointed out
that the eccentricity must reach unity in a finite amount of time, corresponding to the time where
E = 0, and so the mean eccentricity must therefore increase at some point. This line of reasoning
shows that there must be a global minimum of the mean (and osculating) eccentricity of a spiraling
trajectory as it proceeds toward escape.

The minimum eccentricity reached before increasing to escape varies depending on both the ini-
tial eccentricity and initial true anomaly (see Figure 13). The time at which this minimum occurs
also varies. Figures 14 and 15 show the characteristics of the global minimum eccentricity where
the initial true anomaly is zero (the spacecraft begins thrusting at periapsis) and the eccentricity of
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Figure 13. Minimum eccentricity reached during escape, varying initial eccentricity
and initial true anomaly

the initial orbit is varied. It is clear that there are some initial eccentricities for which the global
minimum eccentricity is very near zero, but other initial eccentricities produce a minimum eccen-
tricity that can be quite large (yet still always smaller than the initial eccentricity for e0 > 0). In
general, the more circular an orbit is initially, the sooner the spacecraft will reach its global min-
imum eccentricity, but there are many local minima and maxima. Figure 13 shows the minimum
eccentricity reached when the spacecraft is not constrained to begin at periapsis. There are multiple
“bands” where the osculating eccentricity eventually reaches very near zero.

The time required to escape also varies significantly with initial condition. Figure 16 shows
that when departing from periapsis, the time to escape varies by up to nine days (for this example
problem) based on how eccentric the initial orbit is. Figure 12 shows this variation when considering
different initial true anomalies. Interestingly, the global minimum escape time for these particular
model parameters occurs at an initial eccentricity of e0 ≈ 0.14 and an initial true anomaly of
f0 ≈ 90◦, not from an initially circular orbit and not from periapsis, as perhaps one might expect.

Another interesting observation comes by finding the initial true anomaly for a given initial ec-
centricity where escape is the fastest. That is, if optimally fast escape time is desired from a given
orbit, where in the orbit should the spacecraft begin thrusting? Figure 17 shows the true anomaly at
which thrust should begin if the fastest escape time is desired. (The time-optimal f0 will be differ-
ent for different constant parameters in Table 1.) As initial eccentricity increases, the time-optimal
initial true anomaly wraps several times around the unit circle. Figure 12 shows that departing at
the most sub-optimal initial true anomaly can cause a delay in the escape condition on the order of
single days. Of course, the desired inertial direction of the escape asymptote is usually specified
when a spacecraft escapes from a body, which dictates where in the initial orbit thrust should begin.
Nevertheless, if all that is desired is fast spiral-up or spiral-down to a certain orbital energy, there
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Figure 14. Global minimum eccentricity, varying initial eccentricity, f0 = 0◦
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Figure 15. Time of global minimum eccentricity, varying initial eccentricity, f0 = 0◦
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Figure 16. Time to escape, varying initial eccentricity, f0 = 0◦

is a strong correlation of optimal completion time to initial true anomaly. This behavior was also
described by Petropoulos.12

CONCLUSION

Low-thrust spiraling trajectories are instantaneously energy-optimal when the thrust is directed
along the velocity vector. Assuming that no out-of-plane external forces act on the spacecraft,
Gauss’ variational equations reduce to four differential equations (five if including a non-constant
spacecraft mass) that completely describe the motion of the spacecraft in classical orbit element
space. As thrust proceeds toward escape, the osculating eccentricity decreases to a global minimum
before quickly increasing to the escape condition. This minimum corresponds to the time when
the spacecraft ceases to reach osculating apoapsis, and the fast time variable switches from true
anomaly to argument of periapsis. Spiral-out trajectories always reach their escape condition near
a true anomaly of f ≈ 90◦, and the time needed to escape is highly correlated with the initial true
anomaly for a given initial eccentricity.

The behavior described in this paper was seen in actual mission operations for the Dawn space-
craft. The designed and reconstructed Dawn trajectory, with full gravity and force models, show
the expected characteristics described in this paper. While Dawn did not proceed all the way to es-
cape on its spiral-out trajectory, the characteristics described by the variational equations are clearly
present up to the time when thrust was stopped. To the authors’ best knowledge, this is the first time
that these theoretical and analytical observations of spiral-out trajectories, which have been studied
for decades, have been observed on an actual operational deep-space mission.

While this behavior has been described theoretically, and now seen in actual operations, there
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Figure 17. Initial true anomaly that produces the minimum escape time for a given
initial eccentricity

are still unanswered questions regarding the nature of these spiral-out trajectories. Future areas of
research could focus on what causes escape to always occur at a true anomaly near f = 90◦ (as
opposed to some other value), what the connection is between the initial true anomaly and the time
required to escape, and how to leverage these findings in future operational missions.
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